Home
Class 12
MATHS
if A=[[cos alpha, sin alpha],[-sin alpha...

if `A=[[cos alpha, sin alpha],[-sin alpha,cos alpha]] `then show that` A^2=[[cos 2alpha,sin 2alpha],[-sin 2alpha,cos 2alpha]]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A= [[cosalpha,sinalpha],[-sinalpha,cosalpha]] then show that A^2=[[cos2alpha,sin2alpha],[-sin2alpha,cos2alpha]]

If A,=[[cos alpha,sin alpha-sin alpha,cos alpha]] then show that ,A^(2)=[[cos2 alpha,sin2 alpha-sin2 alpha,cos2 alpha]]

A=[[Cos alpha,sin alpha],[-Sin alpha,cos alpha]] then A^(2)

If A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] ,show that A^2=[[cos2alpha,sin2alpha],[-sin2alpha,cos2alpha]]

If A=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}] , show that A^(2)=[{:(cos2alpha,sin2alpha),(-sin2alpha,cos2alpha) :}].

A=[[cos alpha,sin alpha],[-sin alpha,cos alpha]] find [A^(2)(alpha)]^(-1)

If A(alpha)=[(cos alpha, sin alpha),(-sin alpha, cos alpha)] then the matrix A^(2)(alpha) is

If A_(alpha), = [{:(cos alpha , sin alpha),(-sin alpha , cos alpha):}] , then

If A=[(cos^2 alpha,sin^2alpha),(cos alpha,sin alpha)] and B=[(sin^2 alpha,cos^2 alpha),(sin alpha,cos alpha)]. Find (A+B).

cos^(4)alpha+sin^(4)alpha-6sin^(2)alpha cos^(2)alpha=