Home
Class 12
MATHS
|x|+a(0)x^(n)+a(1)x^(n-1)+a(2)x^(n-2)+.....

|x|+a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-2)+...+a_(n-1)x+a_(n)

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate |x|+a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-1)+...+a_(n-1)x+a_(n)

Differentiate |x|+a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-1)+...+a_(n-1)x+a_(n)

Differentiate a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-2)+...+a_(n-1)x+a_(n)

If p(x)=a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-2)+.....+a_(n-1)x+a_(n)," prove that " underset(xrarra)"lim" p(x)=p(a) .

Differentiate the following with respect of x:a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-2)++a_(n-1)x+a_(n)

Let f(x) = a_(0)x^(n) + a_(1)x^(n-1) + a_(2) x^(n-2) + …. + a_(n-1)x + a_(n) , where a_(0), a_(1), a_(2),...., a_(n) are real numbers. If f(x) is divided by (ax - b), then the remainder is

a_(0)x^(n) + a_(1)x^(n-1) + a_(2)x^(n-2) + ……..a_(n)x^(n) is polynomial of degree ……………

Let f(x)=a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-2)+......+a_(n),(a_(0)!=0) if a_(0)+a_(1)+a+_(2)+......+a_(n)=0 then the root of f(x) is

Let (a_(0))/(n+1)+(a_(1))/(n)+(a_(2))/(n-1)+...+(a_(n-1))/(2)+a_(n)=0 Show that there exists at least real x between 0 and 1 such that a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-2)+...+a_(n)=0

If (a_(0))/(n+1) + ( a_(1))/( n ) + ( a_(2))/( n -1)+"......"+ (a_(n-1))/(2) + a_(n) =0 then a_(0)x^(n) + a_(1) x^(n-1) + "..........." + a_(n-1)x + a_(n) =0 has