Home
Class 12
MATHS
If n ge 2 is an integer A= [(cos (2pi/n)...

If `n ge 2` is an integer `A= [(cos (2pi/n), sin (2pi/n),0),(-sin (2pi/n), cos (2pi/n), 0),(0,0,1)]` and I is the identity matrix of order 3. Then 1) `A^n= I` and `A^(n-1)!= 1` 2) `A^m!= I` for any positive integer m 3) Ais not invertible 4) `A^m= 0` for a positive integer m

Promotional Banner

Similar Questions

Explore conceptually related problems

Let n ge 2 be an integer, A=({:(cos((2pi)/(n)),sin((2pi)/(n)),0),(sin((2pi)/(n)),cos((2pi)/(n)),0),(0,0,1):}) and I is the idnetity matrix of order 3. Then

The least positive integer n such that [{:(cos""(pi)/(4), sin""(pi)/(4)) ,(- sin ""(pi)/(4) , cos ""(pi)/(4)):}]^(n) is an identity matrix of order 2 is

The least positive integer n such that ({:(cos""((pi)/(4)),sin""((pi)/(4))),(-sin""((pi)/(4)),cos""((pi)/(4))):})^n is an identity matrix of order 2 is

" *.i).i) If "n" is an integer then show that "(1+i)^(2n)+(1-i)^(2n)=2^(n+1)cos(n pi)/(2)

If n is an integer then show that (1+i)^(2n)+(1-i)^(2n)=2^(n+1)cos(n pi)/(2)

If n is positive integer and "cos" (pi)/(2n)+"sin" (pi)/(2n) =(sqrt(n))/(2) , then prove that 4 le n le 8

The least positive integer n such that ((2i)^n)/((1-i)^(n-2)),i=sqrt(-1) , is a positive integer,is ______

n|sin x|=m|cos|in[0,2 pi] where n>m and are positive integers

If n is a positive integer prove that (1+i)^(2n)+(1-i)^(2n)=2^(n+1)cos((n pi)/(2))

Let n be a positive integer such that sin (pi/(2n))+cos(pi/(2n))=(sqrt(n))/2dot Then