Home
Class 9
MATHS
" (i) "x-(1)/(2)...

" (i) "x-(1)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

The coefficient of x^(49) in the expansion of (x-1)(x-(1)/(2))(x-(1)/(2^(2)))......*(x+(1)/(2^(49))) is equal to

If (x^(+(1)/(2)) + x^(-(1)/(2)))^(2) = (9)/(2) , then find the value of (x^((1)/(2))-x^(-(1)/(2))) for x gt 1 .

simplify (2x-(1)/(2x))^(2)-(2x+(1)/(2x))(2x-(1)/(2x))

Solve for x: (x-1)/(2x+1) +(2x+1)/(x-1)=2," where "x ne -(1)/(2),1

(x-1) / (2x + 1) + (2x + 1) / (x-1) = (5) / (2), x! =-(1) / (2), 1

Solve for x:(x-1)/(2x+1)+(2x+1)/(x-1)=2, where x!=-(1)/(2),1

Solve for x : (x - 1)/(2x + 1) + (2x + 1)/(x -1) = 2 , where x ne - (1)/(2) , 1

Solve by factorization: (x-1)/(2x+1)+(2x+1)/(x-1)=5/2,\ \ x!=-1/2,\ 1

Solve by factorization: (x-1)/(2x+1)+(2x+1)/(x-1)=(5)/(2),quad x!=-(1)/(2),1