Home
Class 9
MATHS
sqrt((7sqrt(3))/(sqrt(10)+sqrt(3))-(255)...

sqrt((7sqrt(3))/(sqrt(10)+sqrt(3))-(255)/(sqrt(6+55))-(3sqrt(2))/(sqrt(15)+3sqrt(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

(3+sqrt(6))/(sqrt(3)+sqrt(2))

Simplify: (7sqrt(3))/(sqrt(10)+sqrt(3))-(2sqrt(5))/(sqrt(6)+sqrt(5))-(3sqrt(2))/(sqrt(15)+3sqrt(2))

(3sqrt(2))/(sqrt(6)-sqrt(3))+(2sqrt(3))/(sqrt(6)+2)-(4sqrt(3))/(sqrt(6)-sqrt(2))

Simplify (7sqrt3)/(sqrt10+sqrt3)-(2sqrt5)/(sqrt6+sqrt5)-(3sqrt2)/(sqrt15+3sqrt2)

Simplify (7sqrt3)/(sqrt10+sqrt3)-(2sqrt5)/(sqrt6+sqrt5)-(3sqrt2)/(sqrt15+3sqrt2)

For (1)/(asqrt(x)+bsqrt(y)) the rationalising factor is a asqrt(x)-bsqrt(y) . If x=(7sqrt(3))/(sqrt(10)+sqrt(3))-(3sqrt(2))/(sqrt(15)+3sqrt(2))-(2sqrt(5))/(sqrt(6)+sqrt(5)) , then value of x^(4)+x^(2) is

Simplify the following :(5sqrt(5))/(sqrt(11)+sqrt(6))-(3sqrt(3))/(sqrt(6)+sqrt(3))-(3sqrt(2))/(sqrt(15)+3sqrt(2))

(sqrt(7)+sqrt(3))/(sqrt(7)-sqrt(3))-(sqrt(7)-sqrt(3))/(sqrt(7)+sqrt(3))

Simplify: (7sqrt3)/(sqrt10+sqrt3)-(2sqrt5)/(sqrt6+sqrt5)-(3sqrt2)/(sqrt15+3sqrt2)

Simplify: (i) (3sqrt(2)-2sqrt(2))/(3sqrt(2)+\ 2sqrt(3))+(sqrt(12))/(sqrt(3)-\ sqrt(2)) (ii) (sqrt(5)+\ sqrt(3))/(sqrt(5)-\ sqrt(3))+(sqrt(5)-\ sqrt(3))/(sqrt(5)+\ sqrt(3))