Home
Class 8
MATHS
a^(2)-2ab+b^(2)=c...

a^(2)-2ab+b^(2)=c

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)+px+1 is a factor of ax^(3)+bx+c then a a^(2)+c^(2)=-ab b) a^(2)+c^(2)ab c) a^(2)-c^(2)=ab d a^(2)-c^(2)=-ab

If (x^(2)+px+1) is a factor of (ax^(3)+bx+c), then a^(2)+c^(2)=-ab b.a^(2)-c^(2)=-ab c.a^(2)-c^(2)=abd .none of these

Using properties of determinants, prove the following abs{:(a^2, bc, ac +c^2 ),(a^(2) + ab, b^(2),ac ),(ab, b^(2) + bc,c^(2) ):}=4a^(2) b^(2) c^(2) .

If a^(2)+ab+b^(2) = b^(2) +bc +c^(2) where a ne b ne c then find the value of a+b+c .

If a,b,c,d are in proportion, then prove that (a^2+ab+b^2)/(a^2-ab+b^2)=(c^2+cd+d^2)/(c^2-cd+d^2)

If a, b, c denote the sides of a DeltaABC such that a^(2)+b^(2)-ab=c^(2) , then

If a, b, c denote the sides of a DeltaABC such that a^(2)+b^(2)-ab=c^(2) , then

If x^(2)+px=1 is a factor of the expression ax^(3)+bx=c, then a^(2)-c^(2)=ab b.a^(2)+c^(2)=-ab c.a^(2)-c^(2)=-ab d.none of these

Show that (a^(2) +ab+b^(2)) ,(c^(2) +ac +a^(2)) and ( b^(2) +bc+ c^(2)) are in AP, if a,b,c are in AP.