Home
Class 13
MATHS
[" Evaluate "int(0)^(1)(tx+1-x)^(n)dx],[...

[" Evaluate "int_(0)^(1)(tx+1-x)^(n)dx],[" where "n" is a positive integer and "t" is a parameter "],[" independent of "x" Hence,show that "],[int_(0)^(1)x^(k)(1-x)^(n-k)dx=(1)/(^nC_(k)(n+1))," for "k=0,1,...,n]

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : int_(0)^(1)x(1-x)^(n)dx

Evaluate int_(0)^(1)x(1-x)^(n)dx

Evaluate : int_(0)^(1)x(1-x)^(n)dx

Evaluate : int_(0)^(1)x(1-x)^(n)dx .

evaluate int_(0)^(1)x^(2)(1-x)^(n)dx

Evaluate int_(0)^(1)(tx+1-x)^(n)dx , where n is a positive integer and t is a parameter independent of x . Hence , show that int_0^1 ​ x^k (1−x)^(n−k) dx= P/([.^nC_k(n+1)]) ​ for k=0,1,......n , then P=

Evaluate int_(0)^(1)((log(1/x))^(n-1)dx .

Evaluate int_(0)^(1)((log(1/x))^(n-1)dx .

Evaluate int_(0)^(1)((log(1/x))^(n-1)dx .

Evaluate int_(0)^(1)((log1)/(x))^(n-1)dx .