Home
Class 10
MATHS
(a)/((ax-1))+(b)/((bx-1))=ca+b1...

(a)/((ax-1))+(b)/((bx-1))=ca+b1

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve each of the following quadratic equations: (a)/((ax-1))+(b)/((bx-1))=(a+b),xne(1)/(a),(1)/(b)

(a)/(ax-1)+(b)/(bx-1)=a+b,x!=(1)/(a),(1)/(b)

Solve for x:(a)/(ax-1)+(b)/(bx-1)=a+b;x!=(1)/(a),(1)/(b)

Solve : (a)/(ax-1)+(b)/(bx-1)=a+b , where a+b ne 0, ab ne 0 .

if the roots of the equation (x-a)/(ax-1)=(x-b)/(bx+1) are reciprocal to each other.then a.a=1 b.b=2 c.a=2b d.b=0

Solve for x: a/(ax-1)+b/(bx-1)=a+b; x!= 1/a, 1/b

Solve: a/(ax-1)+b/(bx-1)=a+b (x!=1/a,1/b) .

det[[ Show that ,,-1,b,ca,-1,ca,b,-1]]=(a+1)(b+1)(c+1)((a)/(a+1)+(b)/(b+1)+(c)/(c+1)-1)

-1,b,ca,-1,ca,b,-1]|=(a+1)(b+1)(c+1)((1)/(a+1)+(b)/(b+1)+(c)/(c+1)-1)

(d)/(dx)[tan^(-1)((ax-b)/(bx+a))]=