Home
Class 11
MATHS
" Prove that "tan^(-1){(x)/(a+sqrt(a^(2)...

" Prove that "tan^(-1){(x)/(a+sqrt(a^(2)-x^(2)))}=(1)/(2)sin^(-1)(x)/(a),-a

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)(x/sqrt(a^(2)-x^(2)))=sin^(-1)x/a.

Prove that tan^(-1)((x)/(1+sqrt(1-x^(2))))=(1)/(2)sin^(-1)x .

prove that tan^(-1)((x)/(1+sqrt(1-x^(2)))]=(1)/(2)sin^(-1)x

Prove that tan^(-1){x/(a+sqrt(a^2-x^2))}=1/2sin^(-1)(x/a) ,-a lt x lt a

Prove that tan^(-1)((x)/(sqrt(a^(2)-x^(2))))="sin"^(-1)(x)/(a)=cos^(-1)((sqrt(a^(2)-x^(2)))/(a)) .

Prove that tan^(-1){x/(a+sqrt(a^2-x^2))}=1/2sin^(-1)x/a ,-a lt x lt a

Prove that tan^(-1){x/(a+sqrt(a^2-x^2))}=1/2sin^(-1)x/a ,-a lt x lt a

Prove that (sin^(-1)x)=tan^(-1){x/(sqrt(1-x^(2)))}

Prove that tan^(-1)backslash(sqrt(1+x^(2))-1)/(x)=(1)/(2)tan^(-1)x

Prove that tan^-1(x/(sqrt(a^2 - x^2)) = sin^-1 (x/a), |x| < a.