Home
Class 12
MATHS
((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1...

((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=(pi)/(4)-(1)/(2)cos^(-1)x

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove That : tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=(pi)/4-1/2cos^(-1)x =1/(sqrt(2))ltxle1

Prove That : tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=(pi)/4-1/2cos^(-1)x,-1/(sqrt(2))ltxle1

Prove That : tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=(pi)/4-1/2cos^(-1)x,-1/(sqrt(2))ltxle1

Prove that : tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=pi/4-1/2cos^(-1)x,-1/sqrt2lexle1

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=pi/4-1/2cos^(-1)x,-1/(sqrt(2))lt=xlt=1

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-sin x))/(sqrt(1+x)-sqrt(1-sin x)))=(pi)/(4)-(1)/(2)cos^(-1),-(1)/(sqrt(2))<=x<=1

Prove that: tan^(-1)[(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2cos^(-1)x ,\ -1/(sqrt(2))\ lt=x\ lt=1

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)-sqrt(1-x)))=pi/4-1/2cos^(-1),-1/(sqrt(2))lt=xlt=1

Prove that : tan^-1[(sqrt(1+x) - sqrt(1-x))/(sqrt1+x + sqrt1-x)] = pi/4 - 1/2cos^-1x

Show that tan^-1(frac{sqrt(1+x)-sqrt(1-x)}{sqrt(1+x)+sqrt(1-x)})=pi/4-1/2cos^-1 x