Home
Class 9
MATHS
[ If p(x)=x^(3)-5x^(2)+4x-3 and g(x)=x-2...

[ If p(x)=x^(3)-5x^(2)+4x-3 and g(x)=x-2, show that p(x) is not a multiple of g(x).]

Promotional Banner

Similar Questions

Explore conceptually related problems

If p(x)=x^(3)-5x^(2)+4x-3 andg(x)=x-2 show that p(x) is not a multiple of g(x).

If p(x)=2x^(3)-11x^(2)-4x+5andg(x)=2x+1 , show that g(x) is not a factor of p(x).

Let p(x)=x^(3)-x+1andg(x)=2-3x , Check whether p(x) is a multiple of g (x) or not .

If p(x)=5x-4x^(2)+3 then p (-1)= ?

If p(x)=8x^(3)-6x^(2)-4x+3 and g(x) = (x)/(3)-(1)/(4) then check whether g (x) is a factor of p(x) or not.

(iv) Divide P(x)=2x^(2)-3x+5 by g(x)=x-3

If p(x)=x^(5)+4x^(4)-3x^(2)+1 " and" g(x)=x^(2)+2 , then divide p(x) by g(x) and find quotient q(x) and remainder r(x).

If p(x)=x^(5)+4x^(4)-3x^(2)+1 " and" g(x)=x^(2)+2 , then divide p(x) by g(x) and find quotient q(x) and remainder r(x).

Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following: (i) p(x) = x^3 - 3x^2 + 5x - 3, g(x) = x^2 - 2 (ii) p(x) = x^4 - 3x^2 + 4x - 5, g(x) = x^2 + 1 - x (iii) p(x) = x^4 - 5x + 6, g(x) = 2 - x^2