Home
Class 9
MATHS
p(x)=2x^(4)+9x^(3)+6x^(2)-11x-6,g(x)=x-1...

p(x)=2x^(4)+9x^(3)+6x^(2)-11x-6,g(x)=x-1

Promotional Banner

Similar Questions

Explore conceptually related problems

x^(3)-6x^(2)+11x-6=0

f(x)=x^(3)-6x^(2)+11x-6;g(x)=x-3

Determine whether q(x) is a factor of p(x) or not , p(x) = 2x^4 +9x^3 +6x^2 -11x -6 , q(x) = (x-1) .

f(x)=x^(3)-6x^(2)+11x-6,g(x)=x^(2)-3x+2

Verify the division algorithm for the polynomials p(x)=2x^(4)-6x^(3)+2x^(2)-x+2andg(x)=x+2 . p(x)=2x^(3)-7x^(2)+9x-13,g(x)=x-3 .

Using the remainder theorem , find the remainder , when p (x) is divided by g (x) , where p(x)=2x^(3)+3x^(2)-11x-3,g(x)=(x+(1)/(2)) .

Using factor theorem , show that g (x) is a factor of p(x) , when p(x)=2x^(3)+9x^(2)-11x-30,g(x)=x+5

f(x)=(x^(2)-4)|(x^(3)-6x^(2)+11x-6)|+(x)/(1+|x|) then set of points at which the function if non differentiable is

f(x)=x^(3)-6x^(2)+2x-4,g(x)=1-2x