Home
Class 12
MATHS
If f(x) = sin(lim(t rarr 0)(2x)/picot^(-...

If `f(x) = sin(lim_(t rarr 0)(2x)/picot^(-1) (x/t^2))`, then `int_(-(pi)/(2))^((pi)/(2))f(x)` dx is equal to (where , `x ne0`)

A

`-2`

B

`-1`

C

0

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) \, dx \), where \( f(x) = \sin\left(\lim_{t \to 0} \frac{2x}{\pi \cot^{-1}\left(\frac{x}{t^2}\right)}\right) \). ### Step 1: Break the Integral We can break the integral into two parts: \[ I = \int_{-\frac{\pi}{2}}^{0} f(x) \, dx + \int_{0}^{\frac{\pi}{2}} f(x) \, dx \] Let \( I_1 = \int_{-\frac{\pi}{2}}^{0} f(x) \, dx \) and \( I_2 = \int_{0}^{\frac{\pi}{2}} f(x) \, dx \). ### Step 2: Evaluate \( I_1 \) For \( I_1 \): \[ I_1 = \int_{-\frac{\pi}{2}}^{0} \sin\left(\lim_{t \to 0} \frac{2x}{\pi \cot^{-1}\left(\frac{x}{t^2}\right)}\right) \, dx \] As \( t \to 0 \), \( \frac{x}{t^2} \to -\infty \) since \( x < 0 \). Therefore, \( \cot^{-1}(-\infty) = \pi \). Thus, we have: \[ \lim_{t \to 0} \frac{2x}{\pi \cot^{-1}\left(\frac{x}{t^2}\right)} = \lim_{t \to 0} \frac{2x}{\pi \cdot \pi} = \frac{2x}{\pi^2} \] So, \[ f(x) = \sin\left(\frac{2x}{\pi}\right) \] Thus, \[ I_1 = \int_{-\frac{\pi}{2}}^{0} \sin\left(\frac{2x}{\pi}\right) \, dx \] ### Step 3: Integrate \( I_1 \) The integral can be calculated: \[ I_1 = -\frac{\pi}{2} \left[-\frac{1}{2} \cos\left(\frac{2x}{\pi}\right)\right]_{-\frac{\pi}{2}}^{0} \] Calculating the limits: \[ = -\frac{\pi}{2} \left[-\frac{1}{2} \left(\cos(0) - \cos(-1)\right)\right] \] \[ = -\frac{\pi}{2} \left[-\frac{1}{2} (1 - (-1))\right] = -\frac{\pi}{2} \left[-\frac{1}{2} (2)\right] = -\frac{\pi}{2} \cdot -1 = \frac{\pi}{2} \] ### Step 4: Evaluate \( I_2 \) For \( I_2 \): \[ I_2 = \int_{0}^{\frac{\pi}{2}} \sin\left(\lim_{t \to 0} \frac{2x}{\pi \cot^{-1}\left(\frac{x}{t^2}\right)}\right) \, dx \] As \( t \to 0 \), \( \frac{x}{t^2} \to \infty \) since \( x > 0 \). Therefore, \( \cot^{-1}(\infty) = 0 \). Thus, we have: \[ \lim_{t \to 0} \frac{2x}{\pi \cot^{-1}\left(\frac{x}{t^2}\right)} = 0 \] So, \[ f(x) = \sin(0) = 0 \] Thus, \[ I_2 = \int_{0}^{\frac{\pi}{2}} 0 \, dx = 0 \] ### Step 5: Combine Results Now, we combine the results: \[ I = I_1 + I_2 = \frac{\pi}{2} + 0 = \frac{\pi}{2} \] ### Final Result Thus, the value of the integral \( I \) is: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) \, dx = -1 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MOCK TEST 7

    NTA MOCK TESTS|Exercise MATHEMATICS - Subjective Numerical|5 Videos
  • JEE MOCK TEST 6

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • JEE MOCK TEST 8

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If f(x)=lim_(t to 0)[(2x)/(pi).tan^(-1)(x/(t^(2)))] ,then f(1) is …….

lim_(x rarr0)x^(2)sin(pi/x)=

If A=int_(0)^( pi)(cos x)/((x+2)^(2))dx, then int_(0)^( pi/2)(sin2x)/(x+1)dx is equal to

If int_(0)^(x)((t^(3)+t)dt)/((1+3t^(2)))=f(x) , then int_(0)^(1)f^(')(x) dx is equal to

If f(x)=sin x+int_(0)^((pi)/(2))sin x cos tf(t)dt, then int_(0)^((pi)/(2))f(x)dx=

If f(x)=-int_(0)^(x) log (cos t) dt, then the value of f(x)-2f((pi)/(4)+(x)/(2))+2f((pi)/(4)-(x)/(2)) is equal to

(lim)_(x rarr0)(sin(pi cos^(2)x))/(x^(2)) is equal to

If f(x) = int_(0)^(x)(2cos^(2)3t+3sin^(2)3t)dt , f(x+pi) is equal to :

lim_(x rarr0)(sin(pi sin^(2)x))/(x^(2)) is equal to