Home
Class 12
MATHS
If x is rational and 4(x^(2)+(1)/(x^(2))...

If x is rational and `4(x^(2)+(1)/(x^(2)))+16(x+(1)/(x))-57=0` , then the product of all possible values of x is

A

4

B

3

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 4\left(x^2 + \frac{1}{x^2}\right) + 16\left(x + \frac{1}{x}\right) - 57 = 0 \) and find the product of all possible rational values of \( x \), we can follow these steps: ### Step 1: Rewrite the equation Start by letting \( y = x + \frac{1}{x} \). Then, we can express \( x^2 + \frac{1}{x^2} \) in terms of \( y \): \[ x^2 + \frac{1}{x^2} = y^2 - 2 \] Substituting this into the original equation gives: \[ 4(y^2 - 2) + 16y - 57 = 0 \] ### Step 2: Simplify the equation Now, simplify the equation: \[ 4y^2 - 8 + 16y - 57 = 0 \] Combine like terms: \[ 4y^2 + 16y - 65 = 0 \] ### Step 3: Solve the quadratic equation Now, we can use the quadratic formula to solve for \( y \): \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 4 \), \( b = 16 \), and \( c = -65 \): \[ y = \frac{-16 \pm \sqrt{16^2 - 4 \cdot 4 \cdot (-65)}}{2 \cdot 4} \] Calculate the discriminant: \[ 16^2 = 256 \] \[ -4 \cdot 4 \cdot (-65) = 1040 \] Thus, \[ b^2 - 4ac = 256 + 1040 = 1296 \] Now, substituting back: \[ y = \frac{-16 \pm \sqrt{1296}}{8} \] Since \( \sqrt{1296} = 36 \): \[ y = \frac{-16 \pm 36}{8} \] This gives us two possible values for \( y \): \[ y_1 = \frac{20}{8} = \frac{5}{2}, \quad y_2 = \frac{-52}{8} = -\frac{13}{2} \] ### Step 4: Find values of \( x \) Now we need to find \( x \) from \( y \): 1. For \( y_1 = \frac{5}{2} \): \[ x + \frac{1}{x} = \frac{5}{2} \] Multiply through by \( 2x \): \[ 2x^2 - 5x + 2 = 0 \] Using the quadratic formula: \[ x = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 2 \cdot 2}}{2 \cdot 2} = \frac{5 \pm \sqrt{9}}{4} = \frac{5 \pm 3}{4} \] This gives: \[ x_1 = \frac{8}{4} = 2, \quad x_2 = \frac{2}{4} = \frac{1}{2} \] 2. For \( y_2 = -\frac{13}{2} \): \[ x + \frac{1}{x} = -\frac{13}{2} \] Multiply through by \( 2x \): \[ 2x^2 + 13x + 2 = 0 \] Using the quadratic formula: \[ x = \frac{-13 \pm \sqrt{13^2 - 4 \cdot 2 \cdot 2}}{2 \cdot 2} = \frac{-13 \pm \sqrt{169 - 16}}{4} = \frac{-13 \pm \sqrt{153}}{4} \] Since \( \sqrt{153} \) is not a rational number, this does not yield rational values for \( x \). ### Step 5: Calculate the product of all possible rational values of \( x \) The rational solutions we found are \( x = 2 \) and \( x = \frac{1}{2} \). The product of these values is: \[ 2 \cdot \frac{1}{2} = 1 \] ### Final Answer The product of all possible rational values of \( x \) is \( \boxed{1} \).
Promotional Banner

Topper's Solved these Questions

  • JEE MOCK TEST 7

    NTA MOCK TESTS|Exercise MATHEMATICS - Subjective Numerical|5 Videos
  • JEE MOCK TEST 6

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • JEE MOCK TEST 8

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If (2)^(log_(2)x^(2))-(3)^(log_(3)(x))-6=0 ,then sum of all possible values of x is

If log_(3/2)((2x-8)/(x-2))<0 then set of all possible values of x is :

If (x^(2)-7x+9)^(x^(2)-8x+7)=1 then sum of all possible values of x is :

If tan^(-1).(1)/(2x+1)+tan^(-1).(1)/(4x+1)=cot^(-1)((x^(2))/(2)) , then the number of all possible values of x is/are

" If "f(x)=x^((1)/(log x))" ,then set of all possible values of "x" for which "f'(x)=0" is "

If x^(2)+2ax+a<0AA x in[1,2] then find set of all possible values of a

If (x - 3)(2x + 1) = 0, then the possible values of 2x + 1 are: