Home
Class 12
MATHS
If f(x)=sinx+cosx and g(x)=x^2-1, then ...

If `f(x)=sinx+cosx `and `g(x)=x^2-1`, then `g(f(x))` is invertible in the domain .

A

`[0,(pi)/(2)]`

B

`[-(pi)/(4),(pi)/(4)]`

C

`[-(pi)/(2),(pi)/(2)]`

D

`[0,pi]`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • JEE MOCK TEST 7

    NTA MOCK TESTS|Exercise MATHEMATICS - Subjective Numerical|5 Videos
  • JEE MOCK TEST 6

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • JEE MOCK TEST 8

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sin x+cos x and g(x)=x^(2)-1 then g(f(x)) is invertible in the domain.

If f(x)=sinx+cosx, g(x)= x^(2)-1 , then g{f(x)} is invertible in the domain

If f(x)=cosx+sinx and g(x)=x^(2)-1 , then g(f(x)) is injective in the interval

If f(x)=x^2 and g(x)=x^2+1 then: (f@g)(x)=(g@f)(x)=

If f(x)=3x+1 and g(x)=x^(3)+2 then ((f+g)/(f*g))(0) is:

If f(x)=sinx" and "g(x)=sgn sinx , then g'(1) equals

If f(x)=1+2x and g(x) = x/2 , then: (f@g)(x)-(g@f)(x)=

For x in R ,f(x)=|log2-sinx| and g(x)=f(f(x)) , then (1) g is not differentiable at x=0 (2) g'(0)=cos(log2) (3) g'(0)=-cos(log2) (4) g is differentiable at x=0 and g'(0)=-sin(log2)

f(x)={x+1,x =0 and g(x)={x^(3),x =1 Then find f(g(x)) and find its domain and range.