Home
Class 10
MATHS
To prove (cosA/1+sinA)+(1+sinA/cosA) = ...

To prove `(cosA/1+sinA)+(1+sinA/cosA) = 2 secA

Text Solution

Verified by Experts

`cos A = (cos^2 (A/2) - sin^2(A/2)) = (cos(A/2)+sin(A/2))(cos(A/2)-sin(A/2))`
`1+sinA = cos^2(A/2)+sin^2(A/2) +2sin(A/2)cos(A/2) = (cos(A/2)+sin(A/2))^2`
`:. cosA/(1+sinA) = (cos(A/2)-sin(A/2))/(cos(A/2)+sin(A/2))`
`:. L.H.S. = cosA/(1+sinA)+(1+sinA)/cosA =(cos(A/2)-sin(A/2))/(cos(A/2)+sin(A/2)) +(cos(A/2)+sin(A/2))/(cos(A/2)-sin(A/2)) `
`= ((cos(A/2)-sin(A/2))^2+(cos(A/2)+sin(A/2))^2)/(cos^2(A/2) - sin^2(A/2))`
`=(cos^2(A/2)+sin^2(A/2) +2sin(A/2)cos(A/2)+cos^2(A/2)+sin^2(A/2) -2sin(A/2)cos(A/2))/(cosA)`
`=(1+1)/cosA`....(As `cos^2(A/2)+sin^2(A/2) = 1`)
` = 2secA = R.H.S.`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cosA/(1+sinA)+(1+sinA)/cosA=2secA .

Prove that : (cosA)/(1+sin A) +(1+sinA)/(cosA)=2 sec A

Prove that : (cosA)/(1+sinA)+(1+sinA)/(cosA)=2secA.

Prove: (1+cosA)/(sinA)=(sinA)/(1-cosA)

Prove the following identity, where the angles involved are acute angles for which the expressions are defined. (cosA)/(1+sinA)+(1+sinA)/(cosA)=2secA

Prove the following identities,where the angles involved are acute angles for which the expressions are defined. (ii) (cosA)/(1+sinA)+(1+sinA)/(cosA)=2secA

Prove the following identities. where the angles involved are acute angles for which the expressions are defined. (cosA)/(1+sinA)+(1+sinA)/(cosA)=2secA

Prove the following identities, where the angles involved are acute angles for which the expressions are defined. : (cosA)/(1+sinA)+(1+sinA)/(cosA)=2secA .