Home
Class 12
MATHS
The matrix A ( I + A)^-1 is equal to (if...

The matrix `A ( I + A)^-1` is equal to (if `|A| != 0, |I + A| != 0`)

Promotional Banner

Similar Questions

Explore conceptually related problems

If A is a square matrix such that A^2 = I , then A^(-1) is equal to (i) I (ii) 0 (iii) A (iv) I+A

If A is a square matrix such that A^2 = I, then A^(-1) is equal to (i) I (ii) 0 (iii) A (iv) I+A

If A is a square matrix and |A|!=0 and A^(2)-7A+I=0 ,then A^(-1) is equal to (I is identity matrix)

Let A=[(0,0,-1),(0,-1,0),(-1,0,0)] Then only correct statement about the matrix A is (A) A is a zero matrix (B) A^2=I (C) A^-1 does not exist (D) A=(-1) I where I is a unit matrix

Let A=[(0,0,-1),(0,-1,0),(-1,0,0)] Then only correct statement about the matrix A is (A) A is a zero matrix (B) A^2=I (C) A^-1 does not exist (D) A=(-1)I where I is a unit matrix

If A = [(-i,0),(0,i)] then A ' A is equal to

If A= [(0,1,1),(0,0,1),(0,0,0)] is a matrix of order 3 then the value of the matrix (I+A)-2A^2(I-A), where I is a unity matrix is equal to (A) [(1,0,0),(1,1,0),(1,1,1)] (B) [(1,-1,-1),(0,1,-1),(0,0,1)] (C) [(1,1,-1),(0,1,1),(0,0,1)] (D) [(0,0,2),(0,0,0),(0,0,0)]

The matrix [{:(0,-4+i),(4+I,0):}] is

[" If "A" is a square matrix and " |A|!=0 " and " A^(2)-7A+I=0" ,"],[" then "A^(-1) " is equal to ( "" ( is identity matrix) "]

If a matrix A is such that 3A^3 +2A^2+5A+I= 0 , then A^(-1) is equal to