Home
Class 9
MATHS
" (3) "a^(2)-b^(2)+2bc=c^(2)...

" (3) "a^(2)-b^(2)+2bc=c^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Factorize each of the following algebraic expressions: 49-a^(2)+8ab-16b^(2)a^(2)-8ab+16b^(2)-25c^(2)x^(2)-y^(2)+6y-925x^(2)-10x+1-36y^(2)a^(2)-b^(2)+2bc-c^(2)

Factorise : 6a^(2) - 3a^(2) b - bc^(2) + 2c^(2)

Factorize: a^(2)-b^(2)+2bc-c^(2)

(a^(2)-b^(2)-2bc-c^(2))/(a^(2)+b^(2)+2ab-c^(2)) is equivalent to (a-b+c)/(a+b+c)( b) (a-b-c)/(a-b+c)(c)(a-b-c)/(a+b-c)(d)(a+b+c)/(a-b+c)

Factorise by taking at the common factors: (i) ab(a^(2) + b^(2) -c^(2))-bc(c^(2)-a^(2) - b^(2)) +ca(a^(2) + b^(2)-c^(2)) (ii) 2x(a-b) +3y(5a-5b) + 4z(2b-2a)

det [[a ^ (2), bc, c ^ (2) + caa ^ (2) + ab, b ^ (2), caab, b ^ (2) + bc, c ^ (2)]] = 4a ^ (2) b ^ (2) c ^ (2)

If a^(2)+ab+b^(2) = b^(2) +bc +c^(2) where a ne b ne c then find the value of a+b+c .

In a triangle ABC , if a^(2)-b^(2)-c^(2)=bc(lambda^(2)-2lambda-1) , then