Home
Class 12
MATHS
If P=lim(n->oo)(1-1/4)(1-1/9)(1-1/16)......

If `P=lim_(n->oo)(1-1/4)(1-1/9)(1-1/16)....(1-1/n^2); n>=1` then `1/P` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo)(1+1/5)(1+1/5^4)(1+1/5^4)......(1+1/5^(2^n)) is equal to :

lim_(n rarr oo)[(1+1/n)(1+2/n)…..2]^(1/n) =

If lim_(x->1)((x^n-1)/(n(x-1)))^(1/(x-1))=e^p , then p is equal to

Lim_(n rarr oo)[(1)/(1-n^(2))+(2)/(1-n^(2))+.....+(n)/(1-n^(2))] is equal to-

lim_(nto oo) (1-1/(2^(2)))(1-1/(3^(2)))(1-1/(4^(2)))…………….(1-1/(n^(2))) equals:

lim_(n to oo) {(1)/(n)+(1)/(n+1)+(1)/(n+2)+...+(1)/(3n)}=

lim_(n to oo) ((1)/(n)+(1)/(n+1)+...+(1)/(3n)) is equal to

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to