Home
Class 14
MATHS
" 8"(1)/(x-2)+(1)/(x-3)+(1)/(x-4)=0...

" 8"(1)/(x-2)+(1)/(x-3)+(1)/(x-4)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

The expression (1)/(x-1)-(1)/(x+1)-(2)/(x^(2)+1)-(4)/(x^(4)+1) is equal to (8)/(x^(8)+1)( b) (8)/(x^(8)-1)( c) (8)/(x^(7)-1) (d) (8)/(x^(7)+1)

1/(x+1)-1/(x+2)-1/(x+3)+1/(x+4)=0 then x=

[int((x+x^(3))^(1/3))/(x^(4))dx" is equal to "],[[" (1) "(3)/(8)((1)/(x^(2))-1)^(4/3)+c," (2) "-(3)/(8)[(1+(1)/(x^(2)))^(4/3)]+c],[" (3) "(1)/(8)(1+(1)/(x^(2)))^(4/3)+c," (4) "(1)/(8)((1)/(x^(2))-1)^(4/3)+c]]

lim_ (x rarr (1) / (2)) ((8x-3) / (2x-1) - (4x ^ (2) +1) / (4x ^ (2) -1))

lim_(x rarr a){[(a^((1)/(2))+x^((1)/(2)))/(a^((1)/(4))-x^((1)/(4))))^(-1)-(2(ax)^((1)/(4)))/(x^((3)/(4))-a^((1)/(4))x^((1)/(2))+a^((1)/(2))x^((1)/(4))-a^((3)/(4)))]^(-1)-sqrt(2)^(log_(4)a)}^(8)

" If (3x^(3)-8x^(2)+10)/((x-1)^(4))=(3)/(x-1)+(1)/((x-1)^(2))-(7)/((x-1)^(3))+(k)/((x-1)^(2)) then "k=

(lim)_(x rarr0)((1-cos2x)(3+cos x)/(x tan4x)) is equal to (1)(1)/(2)(2)1(3)2(4)-(1)/(4)

1/((x-2)(x-4))+1/((x-4)(x-6))+1/((x-6)(x-8))+1/3=0