Home
Class 11
MATHS
Prove that cos(A+B) cos(A-B)-sin(A+B) si...

Prove that `cos(A+B) cos(A-B)-sin(A+B) sin(A-B)=cos 2A.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: i) sin(A+B)cos(A-B)-cos(A+B)sin(A-B)=sin2B ii) cos(45^(@)-A)cos(45^(@)-B)-sin(45^(@)-A)sin(45^(@)-B)=sin(A+B)

Prove that: i) sin(A+B)cos(A-B)-cos(A+B)sin(A-B)=sin2B ii) cos(45^(@)-A)cos(45^(@)-B)-sin(45^(@)-A)sin(45^(@)-B)=sin(A+B)

Prove that cos(A+B)cos(A-B)=cos^(2)A-sin^(2)B=cos^(2)B-sin^(2)A

Prove that: sin(B-C)cos(A-D)+sin(C-A)cos(B-D)+sin(A-B)cos(C-D)

Prove that cos (A + B) cos (A - B) = cos^(2) A - sin^(2) B = cos^(2) B- sin^(2) A

Prove that cos (A + B) cos (A - B) = cos^(2) B - sin^(2) A

Prove that : cos (A + B) = cos A cos B - sin A sin B .

Prove that sin(A+B)sin(A-B)=sin^(2)A-sin^(2)B=cos^(2)B-cos^(2)A

Prove that, (cos A + cos B)^(2)+(sin A + sin B)^(2)=4cos^ (2)((A-B)/(2))

Prove that : cos (A - B) = cos A cos B + sin A sin B .