Home
Class 12
MATHS
Show that (1-i)^(n)(1-(1)/(i))^(n)=2^(n)...

Show that `(1-i)^(n)(1-(1)/(i))^(n)=2^(n)` for all `n in N`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0 for all n inN

Prove that i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0 , for all n in N .

" *.i).i) If "n" is an integer then show that "(1+i)^(2n)+(1-i)^(2n)=2^(n+1)cos(n pi)/(2)

If n is an integer then show that (1+i)^(2n)+(1-i)^(2n)=2^(n+1)cos(n pi)/(2)

If n is integer then show that (1 + i)^(2n) + (1 - i)^(2n) = 2 ^(n+1) cos . (npi)/2 .

Find the value of i^(n)+i^(n+1)+i^(n+2)+i^(n+3) for all n in N.

If n is a positive integer, show that (1 + i)^(n) + (1 - i)^(n) = 2 ^((n+2)/2) cos ((npi)/4) .

Find the value of i^n+i^(n-1)+i^(n-2)+i^(n-3) for all n in Ndot

......... is the minimum value of n such that (1+i)^(2n) = (1 - i)^(2n) . Where n in N .

If n is a positive integer prove that (1+i)^(2n)+(1-i)^(2n)=2^(n+1)cos((n pi)/(2))