Home
Class 12
MATHS
The value of sum(r=1)^1024 [log2 r] is ...

The value of `sum_(r=1)^1024 [log_2 r]` is equal to, ([.] denotes the greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(n->oo) [sum_(r=1)^n(1/2) ^r] , where [.] denotes the greatest integer function.

Evaluate lim_(n->oo) [sum_(r=1)^n1/2^r] , where [.] denotes the greatest integer function.

Evaluate lim_(n->oo) [sum_(r=1)^n1/2^r] , where [.] denotes the greatest integer function.

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

The value of int _(-1) ^(3) (|x-2 |+[x]) dx is equal to (where [**] denotes greatest integer function)

If [log_2 (x/[[x]))]>=0 . where [.] denotes the greatest integer function, then :

sum_(r=1)^(n) 1/(log_(2^(r))4) is equal to