Home
Class 11
MATHS
If L=lim(x->0) (asinx-bx+cx^2+x^3)/(2x^2...

If `L=lim_(x->0) (asinx-bx+cx^2+x^3)/(2x^2log(1+x)-2x^3+x^4)` exists and is finie then a=, b=, c= L=

Promotional Banner

Similar Questions

Explore conceptually related problems

If L=lim_(x rarr0)(a sin x-bx+cx^(2)+x^(3))/(2x^(2)log(1+x)-2x^(3)+x^(4)) exists and is finie then a=,b=,c=L=

If ("Lim")_(x->0)(asinx-b x+c x^2+x^3)/(2x^2dotln(1+x)-2x^3+x^4) exists & is finite, find the values of a ,\ b ,\ c & the limit.

If lim_(xrarr-1)(sin(x^3+bx^2+cx +d))/((sqrt(2+x)-1){log_e(x+2)}^2) exists and is equal to l, then b+d+l is equal to

If lim_(xrarr-1)(sin(x^3+bx^2+cx +d))/((sqrt(2+x)-1){log_e(x+2)}^2) exists and is equal to l, then b+d+l is equal to

If Lim_(x rarr 0) (a sinx + bxe^(x)+3x^(2))/(sin x-2x+tanx) exists and has value equal to L, then the value of (a+L)/b is equal to

If L=lim_(xto0)(sinx+ae^(x)+be^(-x)+clog_(e)(1+x))/(x^(3)) exists finitely, then Equation ax^(2)+bx+c=0 has