Home
Class 12
MATHS
If a^2 + b^2 - ab - a - b +1 leq 0, a, ...

If `a^2 + b^2 - ab - a - b +1 leq 0, a, b in R and f(x) = (1+ secx) (1 + sec2x) (1+sec2^2 x)....(1+sec2^n x)`, then `f(pi/2^n)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

For n in N, let f_(n) (x) = tan ""(x)/(2) (1+ sec x ) (1+ sec 2x) (1+ sec 4x)……(1+ sec 2 ^(n)x), the lim _(xto0) (f _(n)(x))/(2x) is equal to :

For n in N, let f_(n) (x) = tan ""(x)/(2) (1+ sec x ) (1+ sec 2x) (1+ sec 4x)……(1+ sec 2 ^(n)x), the lim _(xto0) (f _(n)(x))/(2x) is equal to :

For n in N, let f_(n) (x) = tan ""(x)/(2) (1+ sec x ) (1+ sec 2x) (1+ sec 4x)……(1+ sec 2 ^(n)x), the lim _(xto0) (f _(n)(x))/(2x) is equal to :

If (1+sec^(2)pi x). (1+sec^(2)y)= -x^(2)+2x+3 then

If (1+sec^(2)pi x). (1+sec^(2)y)= -x^(2)+2x+3 then

intx((sec2x-1)/(sec2x+1))dx

intx ((sec 2x-1)/(sec 2x+1))dx=

If f(x) = int (x^(2)+sin^(2)x)/(1+x^(2)) sec^(2)x dx and f(0) = 0, then f(1) =

If f_(n)(x)-(tan.(x)/(2))(1+secx)(1+sec 2x)……(1+sec2^(n)x) then which of the following is not true?