Home
Class 12
MATHS
Let OABC be a tetrahedron whose edges ar...

Let OABC be a tetrahedron whose edges are of unit length. If `vec OA = vec a` , `vec OB = vec b`, and `vec OC` = `alpha(vec a + vec b) + beta(vec a xx vec b), `then `(alpha beta)^2 = p/q`(where p & q are relatively prime to each other). then the value of `[q/2p]` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec p = vec a + vec b, vec q = vec a-vec b | vec a | = | vec b | = 1 then | vec p xxvec q | =

If vec P xx vec Q= vec R, vec Q xx vec R= vec P and vec R xx vec P = vec Q then

If vec P+ vec Q = vec R and |vec P| = |vec Q| = | vec R| , then angle between vec P and vec Q is

If vec a=vec p+vec q,vec p xxvec b=0 and vec q*vec b=0 then prove that (vec b xx(vec a xxvec b))/(vec b*vec b)=vec q

If vec r=3vec p+4vec q and 2vec r=vec p-3vec q then

If vec P and vec Q are two vectors, then the value of (vec P + vec Q) xx (vec P - vec Q) is

If vec(a)= 2vec(i) -vec(j) + 3vec(k), vec(b)= p vec(i) + vec(j) + q vec(k) and vec(b) xx vec(a) = vec(0) , then

OABC is a tetrahedron D and E are the mid points of the edges vec OA and vec BC. Then the vector vec DE in terms of vec OA,vec OB and vec OC

If vec(p)= vec(a)-vec(b), vec(q)= vec(a) + vec(b), |vec(a)|= |vec(b)|=t " then " |vec(p) xx vec(q)| =