Home
Class 12
MATHS
If A(x)=|(x^n,sinx,cosx),(n !,sin((npi)...

If `A(x)=|(x^n,sinx,cosx),(n !,sin((npi)/2),cos((npi)/2)),(a,a^2,a^3)|`, then the value of `d^n/(dx^n)[Delta(x)]` at `x=0` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If A(x)=det[[x^(n),sin x,cos xn!sin((n pi)/(2)),cos((n pi)/(2))a,a^(2),a^(3)]], then the value of (d^(n))/(dx^(n))[Delta(x)] at x=0 is

If f(x)=|(x^n, sinx, cosx),(n!, sin((npi)/2), cos((npi)/2)),(a, a^2,a^3)| , then show that d^n/dx^n [f(x)] at x=0 is 0

If f(x)=|(x^n, sinx, cosx),(n!, sin((npi)/2), cos((npi)/2)),(a, a^2,a^3)| , then show that d^n/dx^n [f(x)] at x=0 is 0

If f(x)=|{:(x^(n),sinx,cosx),(n!,"sin"(npi)/(2),"cos"(npi)/(2)),(a,a^(2),a^(3)):}| , then the value of (d^(n))/(dx^(n))(f(x))" at "x=0" for "n=2m+1 is

If f(x)=|{:(x^(n),sinx,cosx),(n!,"sin"(npi)/(2),"cos"(npi)/(2)),(a,a^(2),a^(3)):}| , then the value of (d^(n))/(dx^(n))(f(x))" at "x=0" for "n=2m+1 is

Let "f(x)"=|{:(pi^n,sinpix,cospix),((-1)^(n)!,-sin((npi)/2),-cos((npi)/2)),(-1,1/sqrt2,sqrt3/2):}| Then value or d^n/(dx^n)["f(x)"]"at "x=1" is "

Let "f(x)"|{:(pi^n,sinpix,cospix),((-1)^(n)!,-sin((npi)/2),-cos((npi)/2)),(-1,1/sqrt2,sqrt3/2):}| Then value or d^n/(dx^n)["f(x)"]"at "x=1" is "

If f(x)=|[x^n, n!, 2; cosx, cos((npi)/2), 4; sinx ,sin((npi)/2), 8]| then find the value of (d^n)/(dx^n)([f(x)])_(x=0)dot(n in z)dot