Home
Class 12
MATHS
let f(x)=e^x.e^(x^2).e^(x^3)...............

let `f(x)=e^x.e^(x^2).e^(x^3)................e^(x^n)` and `g(x)=lim_(n->oo) f_n(x)` then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f_1(x)=e^x,f_2(x)=e^(f_1(x)),"........",f_(n+1)(x)=e^(f_n(x)) for all nge1 . Then for any fixed n,(d)/(dx)f_n(x) is

lim_(x->oo)(1-x+x.e^(1/n))^n

If f(x) = lim_(n->oo) tan^(-1) (4n^2(1-cos(x/n))) and g(x) = lim_(n->oo) n^2/2 ln cos(2x/n) then lim_(x->0) (e^(-2g(x)) -e^(f(x)))/(x^6) equals

Let f(x)=(log_e(x^2+e^x))/(log_e(x^4+e^2x)) . If lim_(xrarr oo) f(x)=l and lim_(xrarr-oo)f(x)=m , then

Let f(x)=(log_e(x^2+e^x))/(log_e(x^4+e^2x)) . If lim_(xrarr oo) f(x)=l and lim_(xrarr-oo)f(x)=m , then

let f(x)=(ln(x^(2)+e^(x)))/(ln(x^(4)+e^(2x))) then lim_(x rarr oo)f(x) is

Let f_(1)(x)=e^(x),f_(2)(x)=e^(f_(1)(x)),......,f_(n+1)(x)=e^(f_(n)(x)) for all n>=1. Then for any fixed n,(d)/(dx)f_(n)(x) is

f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x))) . Then lim_(x to oo) f(x) is equal to

f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x))) . Then lim_(x to oo) f(x) is equal to