Home
Class 12
MATHS
Suppose f is a function that satisfies t...

Suppose f is a function that satisfies the equation `f(x + y) = f(x) + f(y)+x^2y+xy^2`€ for all real numbers `x and y`. If `lim_(x->0) (f(x))/x=1`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose f is a derivable function that satisfies the equation f(x+y)=f(x)+f(y)+x^2y+x y^2 for all real numbers x\ a n d\ y . Suppose that (lim)_(x->0)(f(x))/x=1,\ fin d f(0) b. f^(prime)(0) c. f^(prime)(x) d. f(3)

Suppose a differntiable function f(x) satisfies the identity f(x+y)=f(x)+f(y)+xy^(2)+xy for all real x and y .If lim_(x rarr0)(f(x))/(x)=1 then f'(3) is equal to

Let f : R rarr R be a differentiable function satisfying f(x+y)=f(x) + f(y) +x^2y+xy^2 for all real number x and y . If lim_(x rarr 0)(f(x))/x = 1 , then The value of f'(3) is

Let f : R rarr R be a differentiable function satisfying f(x+y)=f(x) + f(y) +x^2y+xy^2 for all real number x and y . If lim_(x rarr 0)(f(x))/x = 1 , then The value of f(9) is

Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(y)+x^(2)y+xy^(2) for all real numbers x and y. If lim_(xrarr0) (f(x))/(x)=1, then The value of f(9) is

Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(y)+x^(2)y+xy^(2) for all real numbers x and y. If lim_(xrarr0) (f(x))/(x)=1, then The value of f(9) is

Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(y)+x^(2)y+xy^(2) for all real numbers x and y. If lim_(xrarr0) (f(x))/(x)=1, then The value of f'(3) is

Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(y)+x^(2)y+xy^(2) for all real numbers x and y. If lim_(xrarr0) (f(x))/(x)=1, then The value of f(9) is

Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(y)+x^(2)y+xy^(2) for all real numbers x and y. If lim_(xrarr0) (f(x))/(x)=1, then The value of f'(3) is

Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(y)+x^(2)y+xy^(2) for all real numbers x and y. If lim_(xrarr0) (f(x))/(x)=1, then The value of f(9) is