Home
Class 12
MATHS
The value of x satisfies the equation (1...

The value of `x` satisfies the equation `(1-2(log x^2)^2)/(log x - 2 (log x)^2)` = 1

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x satisfying the equation (log_(2)2x)(log_(2)^(2)x+log_(2)((2)/(x)))=2

The value of x :satisfying the equation log_(4)(2log_(2)x)+log_(2)(2log_(4)x)=2 is

Number of real values of x satisfying the equation (log)_2(x^2-x)(log)_2((x-1)/x)+((log)_2x)^2=4,i s 0 (b) 2 (c) 3 (d) 7

Find the sum of all possible values of x satisfying simultaneous the equations log^(2)x3log x=log(x^(2))4 and log^(2)(100x)+log^(2)(10x)=14+log((1)/(x)).[ Note : Assume base of logarithm is 10.1]

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7