Home
Class 12
MATHS
I=lim(n rarr oo)(int(0)^( pi/2)sin^(2)xd...

I=lim_(n rarr oo)(int_(0)^( pi/2)sin^(2)xdx)/(tan^(2)x^(2)x+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^( pi/2)x sin xdx

The value of lim_(x rarr oo)(int_(0)^((pi)/(2))sin^(2m)xdx)/(int_(0)^((pi)/(2))sin^(2m+1)xdx) is equal to

lim_(x rarr oo) (int_(0)^(2x) xe^(2)dx)/(e^(4x^(2))) equals :

The value of limit lim_(t rarr oo)(int_(0)^(1)(tan^(-1)x)^(2)dx)/(sqrt(t^(2)+1))

int_ (0) ^ (pi / 2) x sin xdx

the value of lim_(x rarr oo)(int_(0rarr x)(tan^(-1)x)^(2)dx)/(sqrt(x^(2)+1))

The value of lim_(x rarr oo)(int_(0)^(x)(tan^(-1)x)^(2))/(sqrt(x^(2)+1))dx

The value of lim_(n rarr oo)sum_(i=1)^(n)(i)/(n^2)sin((pi i^(2))/(n^(2))) is equal to

lim_(n rarr oo)(n)/(2^(n))int_(0)^(2)x^(n)dx equals

(lim_(x rarr oo)int_(0)^(x)(tan^(-1)t)^(2)dt)/( (d) (pi^(2))/(4)) has the value zero (b) (pi)/(4)(c)1