Home
Class 12
MATHS
If y = f(x) be concave upward function ...

If `y = f(x)` be concave upward function and `y=g(x)` be a function such that `f'(x).g(x)-g'(x).f(x) = x^4+ 2x^2 +10`, then :

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a function such that f(x).f(y)=f(x+y) , f(0)=1 , f(1)=4 . If 2g(x)=f(x).(1-g(x))

If f(x) is an even function and g(x) is an odd function and satisfies the relation x^(2)f(x)-2f(1/x) = g(x) then

Let f(x) be a function such that f(x)*f(y)=f(x+y),f(0)=1,f(1)=4. If 2g(x)=f(x)*(1-g(x))

If f(x) is a twice differentiable function such that f'' (x) =-f(x),f'(x)=g(x),h(x)=f^2(x)+g^2(x) and h(10)=10 , then h (5) is equal to

If f(x) is a twice differentiable function such that f'' (x) =-f,f'(x)=g(x),h(x)=f^2(x)+g^2(x) and h(10)=10 , then h (5) is equal to

If f(x)=(a x^2+b)^3, then find the function g such that f(g(x))=g(f(x))dot

If f(x)=(a x^2+b)^3, then find the function g such that f(g(x))=g(f(x))dot

If f(x)=(a x^2+b)^3, then find the function g such that f(g(x))=g(f(x))dot