Home
Class 12
MATHS
" If "log(2)sin x-log(2)cos x-log(2)[1-t...

" If "log_(2)sin x-log_(2)cos x-log_(2)[1-tan^(2)x]=-1," then "x

Promotional Banner

Similar Questions

Explore conceptually related problems

lf_(log_(2)sin x-log_(2)cos x-log_(2)(1-tan^(2)x))=-1, then x=

If log_(2)sinx-log_(2)cosx-log_(2)(1-tan^(2)x)=-1 then x =

log_(2)sin x-log_(2)cos x-log_(2)(1-tan x)-log_(2)(1+tan x)=-1

lf_(log_(2)(3sin x)-log_(2)(cos x)-log_(2)(1-tan x)-log_(2)(1+tan x)=1) then tan x=

If log_(2)(sinx)-log_(2)(cosx)-log_(2)(1-tanx)-log_(2)(1+tanx)=-1 then tan2x=

If log_(3) sin x-log_(3) cos x-log_(3)(1- tan x)-log_(3)(1+tan x)= -1 , then tan2x is equal to (wherever defined)

If log_(3) sin x-log_(3) cos x-log_(3)(1- tan x)-log_(3)(1+tan x)= -1 , then tan2x is equal to (wherever defined)

If log_2(sinx)-log_2(cos x)-log_2(1-tan x)-log_2(1+ tan x)=-1 then tan 2x =

log_(2)(x+1)-log_(2)(3x-1)=2

log_(cos x)sin x+log_(sin x)cos x=2then x=