Home
Class 9
MATHS
" Q7.If "a+b+c=0," then prove that "((b+...

" Q7.If "a+b+c=0," then prove that "((b+c)^(2))/(3bc)+((c+a)^(2))/(3ac)+((a+b)^(2))/(3ab)=1

Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b+c=0 , then prove that (b+c)^2/(3bc )+ (c+a)^2/(3ca )+ (a+b)^2/(3ab )=1

if a,and c are all non zero and a+b+c=0 , then prove that (a^(2))/(bc)+(b^(2))/(ac)+(c^(2))/(ab)=3.

If a + b + c = 0 , then prove that (a+b)^2/(ab) + (b+c)^2/(bc) + (c+a)^2/(ca)=3

If a+b+c=0 , then prove that a^2/(bc)+b^2/(ca)+c^2/(ab)=3

Prove that |((b+c)^2,ab,ca),(ab,(a+c)^2,bc),(ac,bc,(a+b)^2)|=2abc(a+b+c)^3

If a,b,c are all non-zeros ,a+b+c=0 prove (a^(2))/(bc)+(b^(2))/(ac)+(c^(2))/(ab)=3

If a,b,c are in A.P.,prove that: (a-c)^(2)=4(a-b)(b-c)a^(2)+c^(2)+4ac=2(ab+bc+ca)a^(3)+c^(3)+6abc=8b^(3)

Using properties of determinants, prove that |{:(0, ab^(2), ac^(2)),(a^(2)b, 0, bc^(2)),(a^(2)c, cb^(2), 0):}|=2a^(3)b^(3)c^(3)

if a+b+c = 0, then ((2a^2)/(3bc)+ (2b^2)/(3ca)+(2c^2)/(3ab)) is equal to: यदि a+b+c = 0 है, तो ((2a^2)/(3bc)+ (2b^2)/(3ca)+(2c^2)/(3ab)) बराबर है :