Home
Class 13
MATHS
6sin^(2)theta-sin theta cos theta-cos^(2...

6sin^(2)theta-sin theta cos theta-cos^(2)theta=3

Promotional Banner

Similar Questions

Explore conceptually related problems

Minimum value of the expression cos^(2)theta-(6sin theta cos theta)+3sin^(2)theta+2, is

The least value of cos^(2)theta-6sin theta cos theta+3sin^(2)theta+2 is

The least value of [cos^(2)theta-6sin theta*cos theta+3sin^(2)theta+2] is

((sin^(3)theta+cos^(3)theta)/(sin theta+cos theta)+(cos^(3)theta+sin^(3)theta)/(cos theta+sin theta))=?

((sin^(3)theta+cos^(3)theta)/(sin theta+cos theta)+(cos^(3)theta+sin^(3)theta)/(cos theta+sin theta))=?

sin theta+sin2 theta+sin3 theta=1+cos theta+cos2 theta

Show that :((cos theta-cos3 theta)(sin8 theta+sin2 theta))/((sin5 theta-sin theta)(cos4 theta-cos6 theta))=1

Prove that ((cos theta-cos 3 theta)(sin 8 theta +sin 2 theta))/((sin 5 theta-sin theta)(cos 4 theta-cos 6 theta))=1

The value of sin^(8)theta+cos^(8)theta+sin^(6)theta cos^(2)theta+3sin^(4)theta cos^(2)theta+cos^(6)theta sin^(2)theta+3sin^(2)thetacos^(4)theta is equal to