Home
Class 12
MATHS
tan^(-1)((x)/(a^(2)-x^(2)))rarr sin^(-1)...

tan^(-1)((x)/(a^(2)-x^(2)))rarr sin^(-1)((x)/(a))

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)x((tan^(-1)((x+1)/(x+2))-tan^(-1)((x)/(x+2)))=

The value of lim_(x rarr oo)x[tan^(-1)((x+1)/(x+2))-tan^(-1)((x)/(x+2))]

lim_(x rarr0)(cos^(-1)((1-x^(2))/(1+x^(2))))/(sin^(-1)x)

lim_(x rarr0)((sin^(-1)x-tan^(-1)x)/(x^(3))+(84x tan^(-1)(sqrt(2)-1))/(sin pi x))

sin^(-1)((1-tan^(2)x)/(1+tan^(2)x))

Simplify 2"tan"^(-1)x+"sin"^(-1)((2x)/(1+x^(2))) in terms of "tan"^(-1)x .

lim_(x rarr0){(cos x)^((1)/(sin^(2)x))+(sin2x+2tan^(-13)x+3x^(2))/(ln(1+3x) +sin^(2)x)+xe^(x))}

lim_ (x rarr oo) (2 ^ (x) tan ((a) / (2 ^ (x)))) / (x * sin ((1) / (x)))

(3 pi)/(2) The value of int_(0)^((3 pi)/(2))(|tan^(-1)tan x|-|sin^(-1)sin x|)/(|tan^(-1)tan x|+|sin^(-1)sin x|)dx is equal to

The value of lim_(x rarr0)(tan[e^(2)]x^(2)-tan[-e^(2)]x^(2))/(sin^(2)x)