Home
Class 12
MATHS
function f(x) =sin^(-1)(x-x^2)+sqrt(1-1/...

function `f(x) =sin^(-1)(x-x^2)+sqrt(1-1/|x|+1/[x^2-1])` is defined in the interval where [] denotes the greatest integer function

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=sin^(-1)(2x-x^(2))+sqrt(2-(1)/(|x|)s)+(1)/([x^(2)]) defined in the interval (where [.] is the greatest integer function)

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.