Home
Class 11
MATHS
lim(x->0) (5^(4x)-7^(2x))/x...

`lim_(x->0) (5^(4x)-7^(2x))/x`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x to 0)(5^(x)-5^(-x))/(2x)=

Prove that, lim_(x rarr 0) (5^(x)-4^(x))/(x)=log_(e)((5)/(4))

lim_(x rarr0)(x(5^(x)-3^(x)))/(cos2x-cos4x)

2.Evaluate lim_(x->a)(x^(7)-a^(7))/(x^(5)-a^(5))

The value of lim_(x to 0) (5^x - 5^(-x) )/(2x) is

lim_(x to 0) (log (1 + 2x))/(x) + lim_(x to 0) (x^(4) - 2^(4))/(x - 2) equals

lim_(x to 0) (log (1 + 2x))/(x) + lim_(x to 0) (x^(4) - 2^(4))/(x - 2) equals

lim_(x rarr0)(a^(3x)-b^(4x))/(5x)

The value of lim_(xrarr0)(log(1+2x))/(5x)+lim_(xrarr2)(x^(4)-2^(4))/(x-2) is equal to