Home
Class 12
MATHS
intdx/(x(1+x^10))= (A) 1/10 log((1+x^10)...

`intdx/(x(1+x^10))=` (A) `1/10 log((1+x^10)/x^10)+c` (B) `1/10 log(x^10/(1+x^10))+c` (C) `1/(1+x^10)^2+c` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x-1)/(x)=3, then the value of 1+(1)/(x^(2)) is (a) 9(b) 10(c)11 (d) None of these

int(10 x^9+10 x^x(log)_(e^(10))dx)/(x^(10)+10^x) equals(A) 10^x-x^(10)+C (B) 10^x+x^(10)+C (C) (10^x-x^(10))^(-1)+C (D) log(10^x+x^(10))+C

int_(1//2)^(2)|log_(10)x|dx= a) log_(10)(8//e) b) 1/2log_(10)(8//e) c) log_(10)(2//e) d)None of these

int(10x^(9)+10x^(x)log_(e^(10))dx)/(x^(10)+10^(x)) equals (A) 10^(x)-x^(10)+C (B) ( C) log(10^(x)+x^(10))+C

The inverse of f(x)=(10^(x)-10^(-x))/(10^(x)+10^(-x)) is A). (1)/(2)log_(10)((1+x)/(1-x)) , B). log_(10)(2-x) , C). (1)/(2)log_(10)(2-1) , D). (1)/(4)log_(10)((2x)/(2-x))

The domain of f(x)=(log(sin^(-1)sqrt(x^(2)+x+1)))/(log(x^(2)-x+1)) is a. (-1,1) b. (-1,0) cup (0,1) c. (-1,0) cup {1} d. None of these

Find x, if : (i) log_(10) (x + 5) = 1 (ii) log_(10) (x + 1) + log_(10) (x - 1) = log_(10) 11 + 2 log_(10) 3

If (1)/("log"_(x)10) = (2)/("log"_(a)10)-2 , then x =

If (1)/("log"_(x)10) = (2)/("log"_(a)10)-2 , then x =