Home
Class 12
MATHS
The value of the lim(n->oo)tan{sum(r=1)^...

The value of the `lim_(n->oo)tan{sum_(r=1)^ntan^(- 1)(1/(2r^2))}` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo) sum_(r=1)^ntan^(- 1)((2r+1)/(r^4+2r^3+r^2+1)) is equal to

lim_(nrarroo)tan(sum_(r=1)^ntan^(-1)(1/(r^2+r+1)))

Lim_(n to 0) sum_(x + 1)^(n) tan^(-1) (1/(2r^2)) equals

sum_(r=1)^(n)tan^(-1)((2^(r-1))/(1+2^(2r-1))) is equal to:

lim_(x to oo ) tan { sum_(r=1)^(n) tan^(-1) ((1)/( 1 +r +r^2))} is equal to ________.

Find the value of lim_(n to oo) (tan(sum_(r=1)^(n) tan^(-1)((4)/(4r^(2)+3)))) .

Find the value of lim_(n to oo) (tan(sum_(r=1)^(n) tan^(-1)((4)/(4r^(2)+3)))) .

lim_(n to oo)sum_(r=1)^(n)cot^(-1)(r^(2)+3//4) is

The value of lim_(ntooo)sum_(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is