Home
Class 12
MATHS
x^(m)*y^(2)=(x+y)^(m+m)...

x^(m)*y^(2)=(x+y)^(m+m)

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(m)*y^(n)=(x+y)^(m+n) then (dy)/(dx) is:

If x^(m)y^(n)=(x+y)^(m+n)

If x^(m)y^(n)=(x+y)^(m+n), then ((dy)/(dx))_(x=1,y=2) is equal to

If x^(m)y^(n)=(x+y)^(m+n), prove that (d^(2)y)/(dx^(2))=0

If x^(m)y^(n)=(x+y)^(m+n), prove that (d^(2)y)/(dx^(2))=0

If x^(m)y^(n)=(x+y)^(m+n), prove that (d^(2)y)/(dx^(2))=0

If x^(m)y^(n)=(x+y)^(m+n) , prove that : (d^(2)y)/(dx^(2))=0 .

If x^(m).y^(n)= (x+ y)^(m+n) then show that, (d^(2)y)/(dx^(2))=0

x^(m)-:y^(m)=(x-:y)^(m) , where x and y are non zero rational numbers and m is a positive integer.

If x^(m)y^(n)=(x+y)^(m+n) , then (dy)/(dx)=