Home
Class 12
MATHS
" 7) If "y=(x+sqrt(x^(2)-1))^(m)" ,prove...

" 7) If "y=(x+sqrt(x^(2)-1))^(m)" ,prove that "(x^(2)-1)^(2)((dy)/(dx))^(2)=m^(2)y^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(x+sqrt(x^(2)-1))^(m) , show that (x^(2)-1)(d^(2)y)/(dx^(2))+x(dy)/(dx)=m^(2)y

If y="("x+sqrt(x^(2)-1)")"^(m) , then prove that, (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)+m^(2)y=0

If y= (x + sqrt(x^(2) + 1))^(m) then prove that, (x^(2)+1) y_(2) + xy_(1)= m^(2)y

If y=sqrt(x+1)+sqrt(x-1) , prove that sqrt(x^(2)-1)(dy)/(dx)=1/2y

If y=log[x+sqrt((1+x^(2)))], prove that sqrt((1+x^(2)))(dy)/(dx)=1

If y=sqrt(x+1)+sqrt(x-1), prove that sqrt(x^(2)-1)(dy)/(dx)=(1)/(2)y

If y=log[x+sqrt(x^(2)+1)], prove that (x^(2)+1)(d^(2)y)/(dx^(2))+x(dy)/(dx)=0

If y=e^(m"sin"^(-1)x) , prove that (1-x^(2))(d^(2)y)/(dx^(2))-xdy/(dx)=m^(2)y

If y=sqrt(1+sqrt(1+x^(4))), prove that y(y^(2)-1)(dy)/(dx)=x^(3)