Home
Class 11
MATHS
" 1."quad z=-1-i sqrt(3)...

" 1."quad z=-1-i sqrt(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Principal argument of z=-1-i sqrt(3)

If z_(1)= 2sqrt(2)(1+i)" and "z_(2)=1+isqrt(3) , then z_(1)^(2)z_(2)^(3) is equal to

If z_(1)=1+i sqrt(3) , z_(2)=1-i sqrt(3), then (z_(1)^(100)+z_(2)^(100))/(z_(1)+z_(2))=

The equation z((2+1+i sqrt(3))/(z+1+i sqrt(3)))+bar(z)(z+1+i sqrt(3))=0 represents a circle with

Given the complex number z= (-1 + sqrt3i)/(2) and w= (-1- sqrt3i)/(2) (where i= sqrt-1 ) Calculate the modulus and argument of (w)/(z)

Given the complex number z= (-1 + sqrt3i)/(2) and w= (-1- sqrt3i)/(2) (where i= sqrt-1 ) Represent z and w accurately on the complex plane.

Given the complex number z= (-1 + sqrt3i)/(2) and w= (-1- sqrt3i)/(2) (where i= sqrt-1 ) Calculate the modulus and argument of w and z

If z=(-1)/(2)+i(sqrt(3))/(2) , then 8+10z+7z^(2) is equal to a) -(1)/(2)-i(sqrt(3))/(2) b) (1)/(2)+isqrt(3)/(2) c) -(1)/(2)+i(3sqrt(3))/(2) d) (sqrt(3))/(2)i

The system of equations |z+1-i|=sqrt(2) and |z|=3 has