Home
Class 12
MATHS
20. a, b, c সমান্তর প্রগতিতে থাকলে, দেখা...

20. a, b, c সমান্তর প্রগতিতে থাকলে, দেখাও যে, .+ 1 + 2 + + a .1 + 2.1 + 3 x + b | = 0 । .t + 3 r + 4 x + C [CBSE 05]

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[a b c b c a c a b],a b c=1,A^T A=I , then the value of a^3+b^3+c^3 can be 3 (2) 0 (3) 1 (4) 4

Consider the determinant Delta = |[a_1+b_1x^2,a_1x^2+b_1,c_1],[a_2+b_2x^2,a_2x^2+b_2,c_2],[a_3+b_3x^2,a_3x^2+b_3,c_3]| = 0 , \ w h e r e \ a_i ,b_i , c_i in R \ (i = 1,2,3) \ a n d \ x in R . Statement 1: The value of x satisfying Delta=0 are x=1,-1. Statement 2: If |[a_1,b_1,c_1],[a_2,b_2,c_2],[a_3,b_3,c_3]|=0,t h e n \ Delta=0.

Consider the determinant Delta = |[a_1+b_1x^2,a_1x^2+b_1,c_1],[a_2+b_2x^2,a_2x^2+b_2,c_2],[a_3+b_3x^2,a_3x^2+b_3,c_3]| = 0 , \ w h e r e \ a_i ,b_i , c_i in R \ (i = 1,2,3) \ a n d \ x in R . Statement 1: The value of x satisfying Delta=0 are x=1,-1. Statement 2: If |[a_1,b_1,c_1],[a_2,b_2,c_2],[a_3,b_3,c_3]|=0,t h e n \ Delta=0.

Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c r c r|=0(a b c ,p q r!=0)dot Statement 2: if system of equations a_1x+b_1y+c_1=0,a_2x+b_2y+c_2=0,a_3x+b_2y+c^3=0 has non -trivial solutions |a_1b_1c_1a_2b_2c_2a_3b_3c_3|=0

Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c r c r|=0(a b c ,p q r!=0)dot Statement 2: if system of equations a_1x+b_1y+c_1=0,a_2x+b_2y+c_2=0,a_3x+b_2y+c^3=0 has non -trivial solutions |a_1b_1c_1a_2b_2c_2a_3b_3c_3|=0

If c lt 1 and the system of equations x + y - 1 = 0, 2x - y - c = 0 and -bx + 3by - c = 0 is consistent, then the possible real values of b are a) b in (-3,(3)/(4)) b) b in (-(3)/(2),4) c) b in (-(3)/(4),3) d)None of these

If |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))| = (a - b) (b - c) (c - a) (a + b + c) , where a,b,c are all different, then the determinant |(1,1,1),((x-a)^(2),(x-b)^(2),(x-c)^(2)),((x-b)(x-c),(x-c)(x-a),(x-a)(x-b))| vanishes when a)a + b + c = 0 b) x = (1)/(3) (a + b + c) c) x = (1)/(2) (a + b + c) d) x = a + b + c

If A = x^(3), B = 4x^(2) + x -1, C = x +1 , then find (A -B) (A-C)