Home
Class 11
MATHS
" If "U(n)=|[n,1,5],[n^(2),2N+1,2N+1],[n...

" If "U_(n)=|[n,1,5],[n^(2),2N+1,2N+1],[n^(3),3N^(2),3N+1]|," then "sum_(n=1)^(N)U_(n)" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

If U_n=|(n,1,5),(n^2, 2N+1,2N+1),(n^3,3N^2,3N+1)|, then sum_(n=1)^NU_n is equal to (A) 2sum_(n=1)^Nn (B) 2sum_(n=1)^N(n^2) (C) (1/2)sum_(n=1)^N(n^2) (D) 0

If Delta_(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " then " sum_(k=1)^(n) Delta_(k) is equal to

If Delta_(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " then " sum_(k=1)^(n) Delta_(k) is equal to

If U_(n)=2cos n theta, then U_(1)U_(n)-U_(n-1) is equal to -

If U_n=2 cosntheta then U_1U_n-U_(n-1) is equal to

The value of sum_(n=1)^(N) U_n=|{:(n,1,5),(n^2,2N+1,2N+1),(n^3,3N^2,3N):}| is