Home
Class 11
MATHS
" 199."log(log x)+log(log x^(3)-2)=0...

" 199."log(log x)+log(log x^(3)-2)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

log(log x)+log(log x^(3)-2)=0; where base of log is 10 everywhere.

Solve for x, (a) (log_(10)(x-3))/(log_(10)(x^(2)-21))=(1)/(2),(b)log(log x)+log(log x^(3)-2)=0; where base of log is 10 everywhere.

Equation log(log x)+log(log x^(4)-3)=0 has

3^(log_(3)log sqrt(x))-log x+(log x)^(2)-3=0

log(x-1)+log(x-2)lt log(x+2)

int frac{log (3x)}{xlog(9x)} dx = ............. (A) log(3x) - log(9x) +c (B) log(x) - log(3) log(log 9x) + c (C) log 9 - (log x)log(log 3x) +c (D) log(x) + log(3) log(log 9x) + c

If log_2 (log_2 (log_3 x)) = log_2 (log_3 (log_2 y))=0 , then the value of (x+y) is

3^(log_(3)log sqrt(x))-log x+log^(2)x-3=0

Show that |(log x, log y, logz),(log 2x, log2y, log2z),(log3x, log3y,log3z)|=0

If 9^("log"3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1, then x =