Home
Class 12
MATHS
cos^(-1)(x)+sin^(-1)(x/2)=pi/6...

cos^(-1)(x)+sin^(-1)(x/2)=pi/6

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^-1(x/2)+sin^-1(x/4)=pi/6 , then the value of x is

prove that sin^(-1) cos sin^(-1)x + cos^(-1) sin cos^(-1)x = pi /2

Solve : cos^(-1) (sin cos^(-1)x ) =(pi)/(6) .

Prove that the identities,sin^(-1)cos(sin^(-1)x)+cos^(-1)sin(cos^(-1)x)=(pi)/(2)|x|<=1

The soluation set of inequality (sin x+cos^(-1)x)-(cos x-sin^(-1)x)>=(pi)/(2) is equal to

The value of sin^(-1)(cos(cos^(-1)(cos x)+sin^(-1)(sin x))) where x in((pi)/(2),pi), is equal to (pi)/(2)(b)-pi(c)pi (d) -(pi)/(2)

Find the value of cos(2cos^(-1)x+sin^(-1)x) at x=(1)/(5), where 0<=pi and -(pi)/(2)<=sin^(-1)x<=(pi)/(2)

Q.if solution of the equation 2sin^(-1)x cos^(-1)x-2 pi sin^(-1)x-pi cos^(-1)x+pi^(2)=0 are alpha and beta such that then which of the following is lare correct?

Solve: sin^(-1)x-cos^(-1)x = pi/6