Home
Class 12
MATHS
e^((2x^(2)-2x-1)sin^(2)x)...

e^((2x^(2)-2x-1)sin^(2)x)

Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of e^(2x^2-2x+1)sin^2x is e (b) 1/e (c) 1 (d) 0

The value of lim_(xrarr0^(+))((1-cos(sin^(2)x))/(x^(2)))^((log_(e)(1-2x^(2)))/(sin^(2)x)) is

The value of lim_(xrarr0^(+))((1-cos(sin^(2)x))/(x^(2)))^((log_(e)(1-2x^(2)))/(sin^(2)x)) is

lim_(x to 0) (e^(x^2) - 1)/sin^2x

int((2x+1)e^(2x))/(sin^(2)(xe^(2x)))dx

f(x)=(sin^(2)x)e^(-2sin^(2)x)*max f(x)-min f(x) =

intsqrt((e^x+1)/(e^x-1))dx (A) ln (e^(x)+sqrt(e^(2x)-1))-sec^(-1)(e^(x)) +C (B) ln(e^(x)+sqrt(e^(2x)-1))+sec^(-1)(e^(x))+C (C) ln (e^(x)-sqrt(e^(2x)-1))-sec^(-1)(e^(x)) +C (D) ln(e^(x)+sqrt(e^(2x)-1))-sin^(-1)(e^(-x))+C

If e^((1+sin^(2)x+sin^(4)x+....oo)log2)=16 then tan^(2)x=

If e^((1+sin^(2)x+sin^(4)x+...oo)log2)=16 , then tan^(2)x =

If y=e^(-x)cos x, show that (d^(2)y)/(dx^(2))=2e^(-1)sin x