Home
Class 12
MATHS
|[a,a^2,a^3-1],[b,b^2,b^3-1],[c,c^2,c^3-...

`|[a,a^2,a^3-1],[b,b^2,b^3-1],[c,c^2,c^3-1]|=0 ` prove that `abc= I `

Text Solution

Verified by Experts

`|[a,a^2,a^3-1],[b,b^2,b^3-1],[c,c^2,c^3-1]| = 0`
`=>|[a,a^2,a^3],[b,b^2,b^3],[c,c^2,c^3]|-|[a,a^2,1],[b,b^2,1],[c,c^2,1]| = 0`
`=>abc|[1,a,a^2],[1,b,b^2],[1,c,c^2]|-|[a,a^2,1],[b,b^2,1],[c,c^2,1]| = 0`
`=>abc|[1,a,a^2],[1,b,b^2],[1,c,c^2]|-(-1)^2|[1,a,a^2],[1,b,b^2],[1,c,c^2]| = 0`
`=>abc|[1,a,a^2],[1,b,b^2],[1,c,c^2]|-|[1,a,a^2],[1,b,b^2],[1,c,c^2]| = 0`
`=>|[1,a,a^2],[1,b,b^2],[1,c,c^2]|[abc-I] = 0`
As, `|[1,a,a^2],[1,b,b^2],[1,c,c^2]|` can not be `0`.
`:. abc - I = 0`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

If [[a,a^(2),a^(3)-1b,b^(2),b^(3)-1c,c^(2),c^(3)-1]]=0

IF |{:(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3):}|=0 , then show that abc=1

If b ne c and |[a , a^2, 1+a^3],[ b, b^2, 1+b^3],[ c, c^2, 1+ c^3]| =0 then prove that a b c =-1

Given |(a,a^(2),a^(3)+1),(b,b^(2).b^(3)+1),(c,c^(2)+c^(3)+1)|=0 and a ne b ne c .Show that abc=-1

Prove that the following. [[a,a^2,a^3],[b,b^2,b^3],[c,c^2,c^3]] = abc(a-b)(b-c)(c-a)

If a,b,c are different and |(a,a^(2),a^(3)-1),(b,b^(2),b^(3)-1),(c,c^(2),c^(3)-1)|=0 then

Prove that |[1,a,a^2,a^3+bcd] , [1,b,b^2,b^3+cda] , [1,c,c^2,c^3+dab] , [1,d,d^2,d^3+abc]|=0

Prove that |[[a,b,c],[a^2,b^2,c^2],[a^3,b^3,c^3]]|= abc (a-b)(b-c)(c-a)

If a!=b!=c such that |[a^3-1,b^3-1,c^3-1] , [a,b,c] , [a^2,b^2,c^2]|=0 then

Prove that |[a,b,c] , [a^2,b^2,c^2] , [a^3,b^3,c^3]|= abc(a-b)(b-c)(c-a)