Home
Class 12
PHYSICS
For what kinetic energy of a neutron wil...

For what kinetic energy of a neutron will the associated de-Broglie wavelength be `1.40 xx 10^(-10)m` ? Mass of neutron = `1.675 xx 10^(-27) kg, h = 6.63 xx 10^(-34) Js`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the kinetic energy of a neutron associated with a de-Broglie wavelength of \( \lambda = 1.40 \times 10^{-10} \, \text{m} \), we can follow these steps: ### Step 1: Use the de-Broglie wavelength formula The de-Broglie wavelength \( \lambda \) is given by the formula: \[ \lambda = \frac{h}{p} \] where: - \( h \) is Planck's constant (\( 6.63 \times 10^{-34} \, \text{Js} \)) - \( p \) is the momentum of the neutron. ### Step 2: Rearrange to find momentum Rearranging the formula to solve for momentum \( p \): \[ p = \frac{h}{\lambda} \] ### Step 3: Substitute the values Substituting the known values into the equation: \[ p = \frac{6.63 \times 10^{-34} \, \text{Js}}{1.40 \times 10^{-10} \, \text{m}} \] ### Step 4: Calculate momentum Calculating the above expression: \[ p = \frac{6.63}{1.40} \times 10^{-34 + 10} = 4.7357 \times 10^{-24} \, \text{kg m/s} \] ### Step 5: Use the kinetic energy formula The kinetic energy \( KE \) is given by the formula: \[ KE = \frac{p^2}{2m} \] where \( m \) is the mass of the neutron (\( 1.675 \times 10^{-27} \, \text{kg} \)). ### Step 6: Substitute momentum into the kinetic energy formula Substituting the value of \( p \) into the kinetic energy formula: \[ KE = \frac{(4.7357 \times 10^{-24})^2}{2 \times 1.675 \times 10^{-27}} \] ### Step 7: Calculate \( p^2 \) Calculating \( p^2 \): \[ p^2 = (4.7357 \times 10^{-24})^2 = 22.42 \times 10^{-48} \, \text{kg}^2 \text{m}^2/\text{s}^2 \] ### Step 8: Substitute \( p^2 \) into the kinetic energy formula Now substituting \( p^2 \) into the kinetic energy formula: \[ KE = \frac{22.42 \times 10^{-48}}{2 \times 1.675 \times 10^{-27}} \] ### Step 9: Calculate the denominator Calculating the denominator: \[ 2 \times 1.675 \times 10^{-27} = 3.35 \times 10^{-27} \] ### Step 10: Calculate kinetic energy Finally, calculating \( KE \): \[ KE = \frac{22.42 \times 10^{-48}}{3.35 \times 10^{-27}} = 6.69 \times 10^{-21} \, \text{J} \] ### Final Answer The kinetic energy of the neutron is: \[ KE \approx 6.69 \times 10^{-21} \, \text{J} \] ---
Promotional Banner

Topper's Solved these Questions

  • ELECTRONS AND PHOTONS

    SL ARORA|Exercise TYPE D : Problem For Self Practice|20 Videos
  • ELECTROMAGNETIC WAVES

    SL ARORA|Exercise Problem for self-practice|21 Videos
  • ELECTROSTATIC FORCES, CHARGES AND FIELDS

    SL ARORA|Exercise Problems For Self Practice|1 Videos

Similar Questions

Explore conceptually related problems

For what kinetic energy of a neutron will the associated de-Broglie wavelength be 5.6 xx 10^(-10)m ?

For what kinetic energy of a neutron will the associated de broglie wavelenght be 1.04 xx 10^(-10) m ?

For what kinetic energy of a proton, will the associated de-Broglie wavelength be 16.5nm? Mass of proton =1.675xx10^(-27)kg , h=6.63xx10^(-34)Js

The speed of electron having de Broglie wavelength of 10 ^(10) m is ( me = 9.1 xx 10 ^(-31) kg, h = 6.63xx 10^(-34) J-s)

A. For what kinetic energy of neutron will the associated de Broglie wavelength be 1.40xx10^(-10)m ? B. Also, find the de Broglie wavelength of a neutron, in thermal equilibrium with matter, having an average kinetic energy of ((3)/(2)) kT at 300 K . Given the mass of neutron =1:66xx10^(-27)kg and k=1.38xx10^(-23)Jkg^(-1) .

An electron is moving with a kinetic energy of 2.275 xx 10^(25) J . Calculate its de-Broglie wavelength. (Mass of electron = 9.1 xx 10^(-31) kg, h = 6.6 xx 10^(-34) J s)

Find the de Broglie wavelength of 2 MeV proton. Mass of proton =1.64xx10^(-27)kg , h=6.625xx10^(-34)Js